首页> 外文OA文献 >Improving the Coverage of Earth Targets by Maneuvering Satellite Constellations
【2h】

Improving the Coverage of Earth Targets by Maneuvering Satellite Constellations

机译:通过操纵卫星星座来改善地球目标的覆盖范围

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Satellite constellations around Earth can be used for observing and/or communicating with targets on the surface. This work addresses maneuvering existing satellite constellations in order to improve coverage of multiple targets over a timespan of 30 to 120 days.A direct relationship is established between a satellite's orbital geometry and the coverage provided by that satellite. This is accomplished by (1) identifying the view of the satellite orbit from an inertial sphere centered on the Earth, and (2) utilizing information from all the orbital views across the target's inertial latitude in order to arrive at lower and upper bounds on coverage.Altering a satellite orbit also alters the coverage that it provides. Gauss' variational equations are used to find maneuvering strategies that effect maximal changes in orbital geometry. These distinct maneuvering strategies are then compiled into a list that will be used in the subsequent optimization.The problem of reconfiguring existing satellite constellations in order to improve coverage is phrased as a multiobjective optimization problem. In it, each satellite in the satellite constellation can be assigned any one of the maneuvering strategies as well as an allotment of propellant that will be consumed during the maneuvering. These become the parameters in the optimization problem.An algorithm that is well suited for solving this optimization problem is a multiobjective evolutionary/genetic algorithm. Such an algorithm is capable of handling, without further transformations, the three difficulties with the stated problem: (1) continuous and discrete optimization parameters (e.g. propellant allotment, a distinct maneuvering strategy, etc.), (2) nonlinear optimization objectives (e.g. total coverage time, number of coverage windows, etc.), and (3) multiple optimization objectives (e.g. total coverage time over Target 1, total coverage over Target 2, etc.). This algorithm is implemented by adopting features from other similar algorithms.Finally, a set of examples is investigated in order to study the effectiveness of this approach.
机译:地球周围的卫星星座可用于观测和/或与地面目标通信。这项工作解决了现有卫星星座的机动问题,目的是在30到120天的时间内改善多个目标的覆盖范围。在卫星的轨道几何形状与该卫星提供的覆盖范围之间建立了直接关系。这是通过(1)从以地球为中心的惯性球体确定卫星轨道的视点,以及(2)利用目标惯性纬度上所有轨道视点的信息来确定覆盖范围的上限和下限来实现的更改卫星轨道也会改变其提供的覆盖范围。高斯的变分方程用于发现影响轨道几何形状最大变化的机动策略。然后将这些不同的机动策略汇总成一个列表,以用于后续的优化中。重新配置现有卫星星座以提高覆盖范围的问题称为多目标优化问题。在其中,可以为卫星星座中的每颗卫星分配机动策略中的任何一种,以及分配在机动过程中消耗的推进剂。这些成为优化问题中的参数。一种非常适合解决此优化问题的算法是多目标进化/遗传算法。这样的算法无需进一步转换即可解决上述问题的三个困难:(1)连续和离散的优化参数(例如,推进剂分配,独特的操纵策略等),(2)非线性优化目标(例如,总覆盖时间,覆盖窗口数等),以及(3)多个优化目标(例如,超过目标1的总覆盖时间,超过目标2的总覆盖等)。该算法是通过采用其他类似算法的特征来实现的。最后,研究了一组示例,以研究该方法的有效性。

著录项

  • 作者

    Santos, Michel;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号